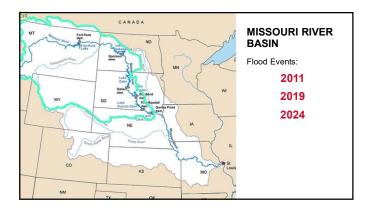
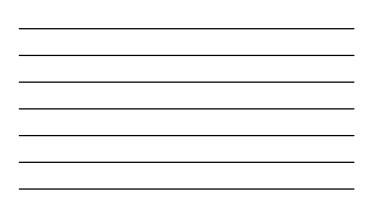
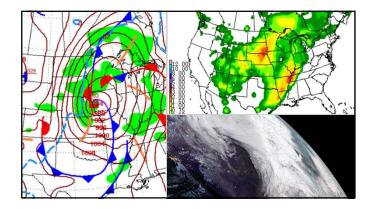
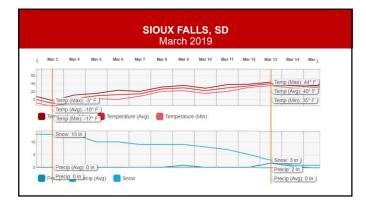

Rising Above the Floods: Resilience for Iowa's Transportation Infrastructure AcEC:IA Presenters: Andy McCoy (HDR) Austin Yates (Iowa DOT)

September 24, 2024

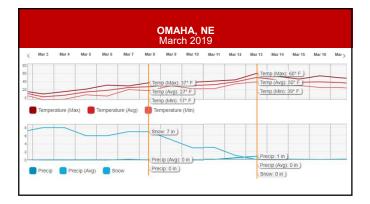


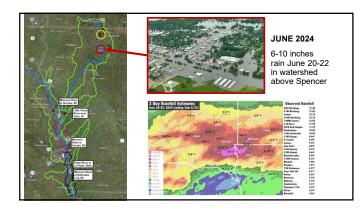

Agenda ———	
Agenda	01 Flooding Background
	02 Iowa DOT Impacts
	03 Evaluating Resiliency
	04 Implemented Resiliency Measures
	05 Take-Aways



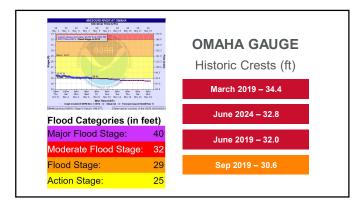

Slide 6

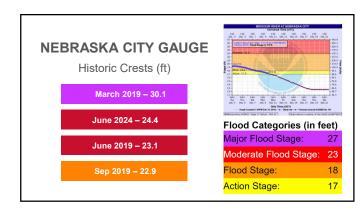
OJ0 Austin to drop in updated graphic


Johannes, Olivia, 2024-09-16T18:12:33.893

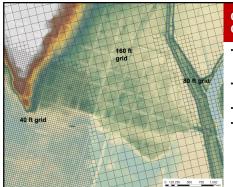








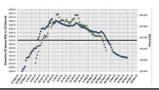
EVALUATING RESILIENCY From Operations to Mitigation


- lowa DOT focused on resiliency for future floods
- Protect DOT assets and provide public benefits
- Leverage 2D hydraulic flood model to evaluate mitigation options
- Test hypothetical breaches against mitigation measures
- Provide operational support during flood events

MISSOURI RIVER HYDRAULIC MODELS

- TUFLOW models
- Work spanning 2019-2024
 2019 peak 190kcfs
- 645,200 cells in US 30 model (North of Omaha)
 - 52 river miles
 - 6.5 hours US 30 model (600 real life hours)
- 776,500 cells in Missouri River Model Omaha to Hamburg
 - 75 river miles
 - 3 hours Big Model (Omaha to Hamburg) (600 real life hours)

QUADTREE CELLS

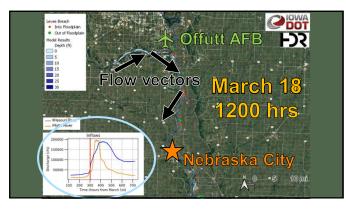

- Sub-grid sampling captures underlying terrain
- Resolution between 40 ft and 160 ft cells
- About 1.1 M wet cells
- March 2019 30-day hydrograph simulation runs in about 3 hours

Combined terrain with sub-grid sampling and road and rail embankment enforcement

MODEL USES

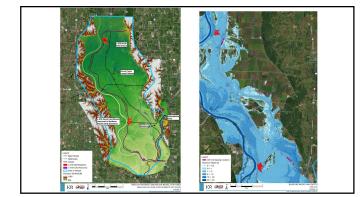
- Incorporate evolving hydraulic controls in floodplain due to levee breach, road and rail embankment overtops, and differing repair schedules
- What operational challenges does lowa DOT face during flooding? Level of service, detour routes, communication challenges. Using NWS flood predictions and model to gain insight.
- What concepts can be tested in the model? Design alternatives.

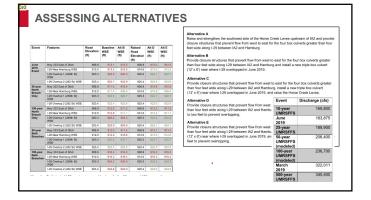
0000		A	~	~		~	~		\sim
	~	1	~						
0000									
1		Apr 201 in dail iarge	.9	Hay 01 2019 istic (6	Jun 81 2819 8 years)	Jul 01 2019 — Perios	Rug 81 2919 I of approv	Sep 81 2819 ed data	


OVERTOPPING AT 680 ~150,000 cfs 2011, 2019 (3 days), and 2024

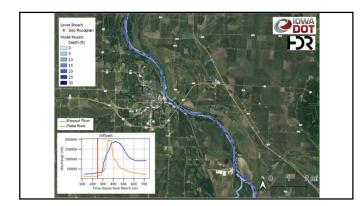
EVALUATING

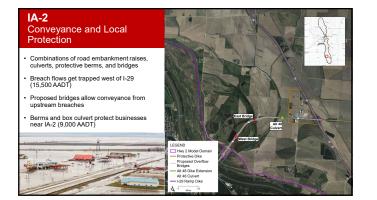
- · Developed several smaller models · Grid refined and hydraulic details added · Focus on specific questions in each area
- Mitigation alternatives considered in focus

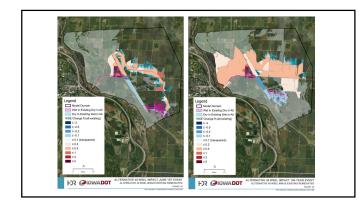

 - Drainage district levee and ditch changes
 - · Add gates to culverts
 - · Add culverts
 - New bridges
- Add shoulder protection



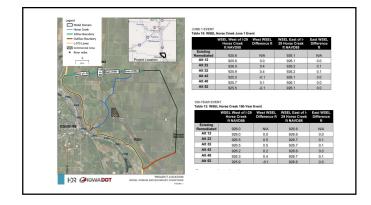
HAMBURG AREA

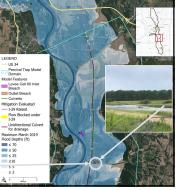

- Keep I-29 Open (15,500 AADT)
 Goal: 50-year flood with levees
 breached
- Tested combinations of mitigation measures
- Road raise and culvert closures now in design phase
- Location of breaches critical





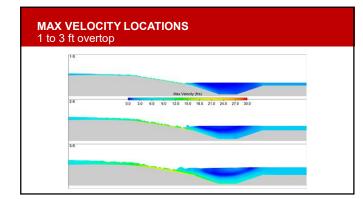
OJ0 Combine with the following slide under the header: Assessing Alternatives

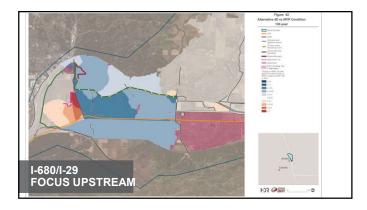

Johannes, Olivia, 2024-09-19T14:22:10.116

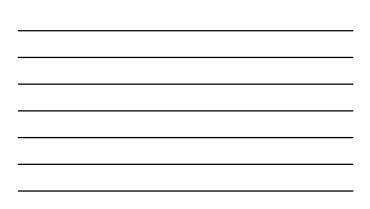


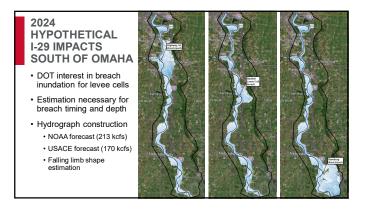
BARTLETT AREA

- Model informed Flexamat design for US-34 (extent and peak velocities) (11,900 AADT)
- Mitigation options evaluated
- Goal: Reduce inundation east of I-29
 Raise I-29 (22,900 AADT)
- Closure structures
- Drainage structures at south end

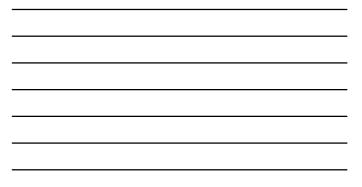


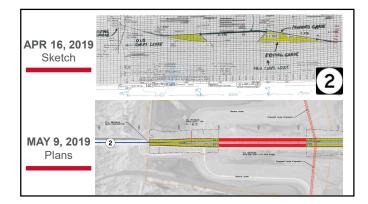





2019 ROADWAY DAMAGE







Take-Aways

- Floodplain drainage and connectivity extremely complex and important – use the hydraulic modeling right tool
- Large scale model allows for experimentation, holistic understanding of floodplain and connectivity (breaches, embankment failures)
- Leveraging analytical tools to work through the possible combinations of protective measures and alternatives to maintain and preserve mobility
- · Nothing is flood proof, we invest in resiliency

